UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS
General Certificate of Education
Advanced Subsidiary Level and Advanced Level

MAXIMUM MARK: 75

This document consists of $\mathbf{6}$ printed pages and $\mathbf{0}$ blank pages.

International Examinations

1 (a) (i) line at about $65 \pm 5 / \mathrm{Wm}^{-2}$
relative rate of photosynthesis

light intensity $/ \mathrm{Wm}^{-2}$
(ii) another factor/named factor has become limiting;
reaction rate cannot increase any further;
(b) (i) 4 of:
at the sea surface the light is at highest intensity;
may cause photo-inactivation of chlorophyll;
or cause motile phytoplankton to migrate deeper;
as light enters water some of it is absorbed so intensity falls;
just below surface the light intensity is still high so photosynthesis rate is highest;
as depth increases the light intensity decreases;
photosynthesis rate falls with decrease in light until insufficient for photosynthesis;
(ii) 2 of:
at Y photosynthesis production equals respiration use;
below this depth photosynthesis could not meet demand of respiration; AW reserves would be used up so plant would die;
(c) 2 of:
dinoflagellates are able to swim to the surface;
enable the plant to reach higher light intensities for more photosynthesis;
show cycles of movement/ sinking and then swimming upwards;
[Total: 11]

2 (a) (i) calculations:
correct conversion of units; ($1 \mathrm{~mm}=1000 \mu \mathrm{~m}, 1 \mathrm{~s}=1,000 \mathrm{~ms}$)
rates:
$\frac{1000}{4980000}=2 \times 10^{-4} \mu \mathrm{~m} / \mathrm{ms}=0.0002 \mu \mathrm{~m} / \mathrm{ms} ;$ or $\frac{1}{83}=0.012 \mathrm{~mm} / \mathrm{min}$
$\frac{12}{48}=0.25 \mu \mathrm{~m} / \mathrm{ms} \quad$ or $\quad \frac{0.012}{0.0008}=15 \mathrm{~mm} / \mathrm{min}$
ratio: $\frac{0.25}{0.0002} \quad$ or $\quad \frac{15}{0.012}=1250 \times$ faster
(ii) ref. to idea that:
some cells too far from the external environment;
these cells receive insufficient supply raw materials/named material to survive;
[2]
(iii) ref. to idea that:
transport system links specialised exchange surfaces/named surfaces to all cells; mass transfer of materials enables constant supply to cells;
(b) 3 of:
species Z has shortest distance between water and blood;
diffusion of oxygen will be faster;
to allow more respiration/ATP production;
enabling species to use muscles more (for greater activity)

3 (a)

environment	stage of life cycle
nest in stream bed/reeds	eggs
between gravel in a stream bed	alevin
(reeds) freshwater streams	parr
estuaries	smoult/adults (at spawning)

(b) (i) 2 of:
salmon develop into different sexes from hatching;
grouper develops into female first and lays eggs;
then develops into male and produces sperm;
(ii) eggs of salmon are less visible to predators (in a nest);
eggs of grouper float on the surface of ocean/in plankton
[Total: 8]

4 (a) (i) a sequence of DNA nucleotides coding for the production of a specific polypeptide/protein ;
(ii) all the alleles of the genes (inherited) of an organism;
(iii) transfer of DNA/gene from one species to another;
(b) (i) 2 of:
some genes require a promoter to function;
the promoter is a site where RNA attaches before transcription;
unless promoter attached, gene will not operate in new location
(ii) the injected genetic material/genes/DNA may not attach to the host DNA/chromosome; marker gene can be used to detect cells that have the gene/DNA attached;
(c) 1 of:
selective breeding transfers whole genome
wide range of variants obtained/unwanted genes transferred;
takes many generations;
[Total: 8]

5 (a) (i) new/young fish added to the population; at a specific stage of the life cycle;
(ii) initially increased mortality increases recruitment; reduces when level of fishing too high/overfishing;

2 of:
fewer fish in the population reduces competition for food/oxygen (or predation by older fish);
more young fish survive to reach the age for recruitment;
overfishing reduces breeding population too much;
(b) the number of fish removed is balanced by recruitment;
(c) reference to idea

3 of:
as fish age they grow and increase in biomass;
as fish age some are lost due to mortality;
highest population biomass is 'mid age' as there are still a lot of fish with higher body mass; falls in oldest and heaviest fish as there are very few in the population;
[Total: 10]

6 (a) (i) 1 of:
fry obtained from the wild/estuaries;
no processed food supplied/depends on natural food supply;
(ii) fish feed on plants;
fertilisers encourage the growth of algae/plants;
(b) 2 of:
fast average growth rate;
high commercial value/good return on investment;
high consumer demand;
tolerant to confinement;
stock available
(c) (i) 2 of:
fish stocks in sea are declining;
less energy efficient in terms of feeding;
may spread disease from one fish to another;
(ii) 2 of:
populations/ catch of fish can vary widely;
nutrient content can be controlled more easily;
sustainable crop;
can track source (for food labelling)

7 (a) (i) sewage provides a source of nutrients that encouraged the growth of the phytoplankton;
(ii) high levels of photosynthesis from the phytoplankton;
(iii) large amount of dead phytoplankton sink to the bottom of bay; decomposition of phytoplankton consumes oxygen;
(b) layer of warm water floats the top of thermocline; cuts off lower levels from atmospheric oxygen;
(c) 3 of idea that;
all organisms are likely to die at 0mg oxygen as needed for respiration/energy release;
only species highly adapted to low oxygen content likely to survive at $1 / 2 \mathrm{mg}$;
variety/species diversity would decrease (as oxygen dependent die) ;
low oxygen tolerant species may increase in number;
[Total: 9]

8 (a) the protection/ preservation/management/ restoration;
of wildlife and of natural resources such as forests, soil, and water;
(b) (i) 2 of idea that; over fishing reduces the stocks below a sustainable level pollution introduces toxins/disease organisms that kill marine organisms; loss of some organisms causes balance of ecosystem to change/disrupts food chains; dredging removes bottom layers that may supply nutrients/removes habitats;
(ii) 2 of idea:
raising awareness of threatened species;
informing about the dangers of human activities/named activities; improving recognition of threatened species;
(c) 3 of:
organisms important to humans are part of an ecosystem;
part of food chain/web that involves other organisms;
may cause killing of organisms seen as a threat to human resource; if other organisms ignored/killed may disrupt food chain;
contribution of other organisms to ecosystem may be essential to survival of human resource in a way as yet not known;
[Total: 9]

